

Spectrum Software, Inc.
11445 Johns Creek Pkwy.
Suite 300
Duluth, GA – 30097
www.spectrumscm.com

Subject: Integrating SpectrumSCM with Visual Studio .NET

Issue Date: Dec 29th, 2004 William C. Brown
 corey@spectrumsoftware.net
 (770)448-8662

1.0 Introduction:

While it is possible to use most standalone CM tools in parallel with an IDE (integrated
development environment), managing both system together can be inconvenient. Modern IDEs
silently modify a large set of supporting files as the user goes about their normal work. For
instance, when a new resource is added to a Visual Studio project, the IDE automatically
updates several project related support files. In order to use a standalone CM system in
parallel with Visual Studio, the user would have to be aware of all of the supporting files that
the IDE may need to create/update, and to have these file already checked out from the CM
environment. Because of these constraints, it is much more practical to have the CM
solution tightly integrated with the IDE itself so that supporting files can be automatically
checked out and modified when necessary.

The integration between an IDE and a CM solution should be as clean as possible in order
to reduce the amount of unnecessary interactions with the user. For example, when checking
out a file through a user initiated activity, or from an IDE initiated background operation,
the process should execute without presenting the user with additional popup boxes and
other dialogs. The user should be able to setup the working environment before hand so that
subsequent check outs and other operations can proceed without the IDE repeatedly
prompting for additional information.

This paper describes the integration between Microsoft Visual Studio .NET1, which will
simply be referred to as Visual Studio throughout the rest of this document, and Spectrum
Software’s source configuration management solution, SpectrumSCM.

2.0 SpectrumSCM and the MS-SCCI:

The Microsoft SCCI (Microsoft Common Source Code Control Interface Specification) is
the standard around which most CM-IDE integrations are formed. The SCCI is a fairly old
interface specification that was originally written strictly as an interface specification between
Microsoft’s development environments and Microsoft’s VSS (Visual Source Safe). The
specification is available from Microsoft through an NDA2 and is not officially supported by
Microsoft. All Microsoft development tools, and most other IDE provider’s tools, make use

1 www.microsoft.com
2 Microsoft requires implementers of the SCCI to sign a non-disclosure agreement in order to obtain the
specification itself.

http://www.microsoft.com/

 Integrating SpectrumSCM with Visual Studio .NET

of the SCCI as the gateway to the users CM solution. CM tool vendors must implement the
SCCI in order to provide a gateway from SCCI enabled development environments to their
CM solution. The CM tool vendor must implement the SCCI exactly as it is defined, but are
also free to enhance the implementation with additional popup dialogs and other necessary
windows. While the vendor is free to add additional popup dialogs where necessary, it really
is best to keep the number of extra popup dialog boxes to a minimum. Most IDEs already
have a set of dialogs that are going to be presented to the user during normal operations
anyway, so it would be an annoyance to the user to be presented with any other additional
dialogs.

3.0 The SpectrumSCM SCCI Implementation:

The SpectrumSCM SCCI implementation (SpectrumSCCI) is a complete implementation
of the Microsoft SCCI interface specification. This implementation attempts to abide by the
tenets mentioned in the introduction and has been made to be as unobtrusive to the user as
possible. For the most part, the SpectrumSCM implementation of the SCCI is almost
invisible to the user and as such does not present additional popup dialog windows to the
user unless absolutely necessary. All SpectrumSCM specific options are controlled through
the SpectrumSCM Dashboard (see section 3.1 for details on the Dashboard) and as such do
not need to be prompted for each time a CM operation is accessed through Visual Studio.

The SpectrumSCM implementation of the SCCI allows the user to use many of
SpectrumSCM’s advanced features, including the use of Change Requests3, advanced
branching patterns4, reports and visual differencing. The implementation is a native
implementation of the SCCI and was done by creating a Microsoft Windows DLL that
Visual Studio uses to communicate with the SpectrumSCM Dashboard. The Dashboard
completes the connection to the SpectrumSCM server itself, thus creating a 3-tiered system
that is extremely flexible. The user is free to switch between multiple projects in Visual
Studio without having to change settings on the Dashboard or make any other adjustments
to the CM system. The user is also free to start as many instances of Visual Studio as they
need. Each separate instance of the Visual Studio application will be accompanied by a
separate instance of the SpectrumSCM Dashboard.

3.1 The SpectrumSCM Dashboard5:

The SpectrumSCM Dashboard is a unique concept in SCCI integrations and Spectrum
Software is proud to be the first SCM vendor to offer this unique integration to Visual
Studio users. The Dashboard is delivered as part of the standard SpectrumSCM UI
installation, only the Visual Studio DLL plug-in must be downloaded separately from the
Spectrum web site to complete the installation. (Please see the section 4.0 on installation).
The SpectrumSCM Dashboard is a unique feature of the SpectrumSCM SCCI
implementation that allows the user to use many of SpectrumSCM’s advanced features and
helps to eliminate annoying popup windows. The Dashboard itself is a very low profile strip
that can be placed anywhere on the users screen, much like a detachable toolbar would be

3 Change Requests are also know as Change Lists or Modification Requests in other systems.
4 http://www.spectrumscm.com/WhitePapers/BranchingDesignPatternsupdate.pdf
5 Patent Pending.

Dec 29, 2004 Spectrum Software Proprietary Page 2 of 36

 Integrating SpectrumSCM with Visual Studio .NET

placed just above the Window’s Start Menu Taskbar, or anchored to the top of the users
screen. The User simply needs to adjust the size of the Visual Studio main screen to just
slightly below full screen status to allow the Dashboard a small viewing area. The Dashboard
can also be minimized into the taskbar as it is not necessary to access the Dashboard unless
the user wishes to select a different change request, or operate against a different branch of
their product. An illustration of the SpectrumSCM Dashboard is given in Figure #1.

Figure #1

In this figure, the SpectrumSCM Dashboard is working with project Connector DLL, on
the Mainline branch and the user is currently using CR# Connector DLL00001 for his/her
CM activities. Also note in the title bar that this instance of the Dashboard is listening for
activity on port 1110, which is the starting port number for a series of Dashboards that the
user may start if they choose to work with multiple instances of Visual Studio. A single
Dashboard instance can be used to work with a series of Visual Studio projects as long as
the user opens those projects within a single instance of Visual Studio. Also note that in this
particular case secure socket layers (SSL) is not being used.

3.2 Dashboard Configuration (Project Mapper):

The SpectrumSCM Dashboard must be configured using the Project Mapper configuration
screen before the Dashboard can be used with Visual Studio or other IDE projects. The
Project Mapper screen is accessed by pressing the Setup button, which is located on the far
right of the Dashboard display. The Project Mapper screen is shown in Figure #2

Figure #2

The SpectrumSCM Dashboard Project Mapper allows users to map Visual Studio or other
IDE projects to SpectrumSCM repository names. Each IDE project can also have a
separate working directory (Local Root Directory) from other projects. During CM
operations the SpectrumSCM Dashboard will examine the directory information provided
by Visual Studio and will determine the proper working directory to use for each file level

Dec 29, 2004 Spectrum Software Proprietary Page 3 of 36

 Integrating SpectrumSCM with Visual Studio .NET

operation. This is extremely important for Visual Studio web based projects or for any
higher level solution or project that contains multiple sub-projects.

T
p
a
D
m
s
i

I
S
s
S
b
b

O
i
t
I
r

D
c
S
S

T
h
b

D

Tip: Visual Studio solutions with sub-projects should all share the same
SpectrumSCM repository (SSCM Repository) value. This must be done since
Visual Studio and other IDEs do not treat sub-project files separately from the
other files in the higher level solution.

he user must configure the Dashboard first before any other IDE operations are
erformed. Each Visual Studio project name must be entered into the Project Mapper tool
nd each IDE project must be associated with a SpectrumSCM repository and a Local Root
irectory. Once the project information has been entered into the Mapper screen, the user
ust either press the Save button or, when prompted by the Close button action, choose to

ave the current configuration information to disk. Once saved, the configuration
nformation will be persisted for future use.

n the Visual Studio environment, the Dashboard can be manually started by starting Visual
tudio directly and then using the File->Source Control->SpectrumSCM menu item to
tart the SpectrumSCM Dashboard. When the Dashboard starts, login and then press the
etup button to access the Project Mapper screen. Once the configuration information has
een added to the Dashboard, the user can proceed to open a Visual Studio project and
egin SCCI related activities.

ther SCCI compliant IDEs may start the Dashboard on initialization but may proceed to
mmediately start issuing SCCI commands. In this case, errors may be encountered before
he Dashboard configuration can be completed. Acknowledge any error messages that the
DE may produce and proceed to configure the Dashboard. Once configured, close and
estart the IDE to begin work.

ashboard configurations can be easily shared between users. The Project Mapper
onfiguration information is stored in the user’s home directory in a file called “.SCCIdata”.
ee section 3.3 for a complete description of all of the control files and log files used by the
pectrumSCM Dashboard.

o share configuration information between users, simply place the “.SCCIdata” file in the
ome directory of each user that will be using the IDE solution. The .SCCIdata file can also
e e-mailed to other users as an attachment.

ec 29, 2004 Spectrum Software Proprietary Page 4 of 36

 Integrating SpectrumSCM with Visual Studio .NET

3.3 Control Files and Log Files:

 change either setting in the specSCCI.ini control file. The format of
e file is as follows:

_06\bin\javaw | 1110
ebug=yes

t
ommunication information, errors and other useful information to the following two files:

:\tmp\Dashboard_<port>.log

equested by Spectrum Software in order to resolve
y problems encountered by the user.

button on the Dashboard to review and change information
ntained within this file.

ress or name of the default server.
he format of an example <.SCMui> file is as follows:

92.168.100.3:1099::*

uration Wizard. Figure #3 illustrates the main
creen of the UI configuration wizard:

The SpectrumSCM Dashboard recognizes and works with three control files that are located
in the user’s home directory. The <specSCCI.ini> file controls the path to the Java virtual
machine, and the starting port number for Visual Studio to Dashboard communications.
The User can elect to
th

C:\j2sdk1.4.2
D

Note that the separator between the Java virtual machine specification and the port number
is the vertical pipe symbol “|”. The second line of the file controls the debugging/logging
feature of the Dashboard and the IDE. When enabled, both systems will write ou
c

C:\tmp\specSCCI_<port>.log
C

The port number is part of the log file name itself. This allows the user to discriminate
between the log files of multiple running instances of the Dashboard and the IDE.
Normally, the debug feature is turned off as it generates a fair amount of information. The
feature need only be turned on when r
an

The second control file is the <.SCCIData> file. This file contains the information entered
into the Project Mapper configuration screen. This file is binary and thus cannot be edited
directly. Use the Setup
co

The last control file is the <.SCMui> file. This file contains information regarding the
installation directory for SpectrumSCM and the IP add
T

c:\SCM
1

The first line of the file contains the path to the actual SpectrumSCM installation directory.
The second line and possibly other lines, contain information about where the
SpectrumSCM server is running, the port number it is running on, whether the server is SSL
enabled and finally, which server is the default. The asterisk denotes which server is the
default server. The .SCMui file should not be edited by hand. The content of the file is
controlled through the SpectrumSCM UI configuration wizard. The configuration wizard
can be started by navigating through the Window’s Start menu to the configuration wizard:
Start->SpectrumSCM UI->UI Config
s

Dec 29, 2004 Spectrum Software Proprietary Page 5 of 36

 Integrating SpectrumSCM with Visual Studio .NET

Figure #3

Note that the default entry on this screen is the 192.168.100.3 server, just like in the contents
of the .SCMui file listed above. When the user changes this information, it is reflected in th
.SCMui file. The Dashboard uses the information in the .SC

e
Mui file to locate the running

rver on a particular machine and particular port number.

.0 Installation:

se

4

Installation of the SpectrumSCCI product into a Windows machine is very simple. The user
simply needs to download the SpectrumSCCI_install.jar from the SpectrumSCM web page
www.spectrumscm.com and then double click the jar file to begin the installation. The
installation needs to be done with the same user-id that was used to install the SpectrumSCM
system itself. Note that only the SpectrumSCM UI portion of the system needs to be
installed on the user’s workstation and not the entire SpectrumSCM server portion.
The installation will automatically detect the SpectrumSCM installation directory and adjust
the registry entries to match. The installation will also install all of the necessary DLLs and

ther supporting libraries in the existing SpectrumSCM installation directory. o

Dec 29, 2004 Spectrum Software Proprietary Page 6 of 36

http://www.spectrumscm.com/

 Integrating SpectrumSCM with Visual Studio .NET

4.1 Registry Keys:

this
ection is provided as reference only and requires no action by the user/installer.

Figure #4

The SpectrumSCCI installation will install several keys into the Windows registry
automatically. These entries are depicted in figures #4, #5 and #6. Please note that
s

These registry entries define Spectrum Software as a software vendor that has the softwa
product SpectrumSCM installed on this machine. The two keys (SCCServerName and
SCCServerPath) identify the name of the SCCI provider (SpectrumSCM) and the pat
actual DLL that Visual Studio and other products will use to communicate with the
Dashboard. Note that the installation path will be differe

re

h to the

nt for each machine, depending on
here the actual SpectrumSCM installation directory is.

Figure #5

w

This figure illustrates the second key installed during the SpectrumSCCI installation. This
key installs SpectrumSCM as a possible SourceCodeControlProvider instance. Note that this
ey points to the key that was added in Figure #4.

k

Dec 29, 2004 Spectrum Software Proprietary Page 7 of 36

 Integrating SpectrumSCM with Visual Studio .NET

Figure #6

This figure illustrates the third and last key that is installed during the SpectrumSCCI
installation. This key provides specific information about the SCCI provider and again points

 SpectrumSoftware as a possible provider.

the Source Control sub
enu of Visual Studio’s File menu. This is depicted in figure #7.

Figure #7

to

With these keys installed, Visual Studio will automatically detect the existence of
SpectrumSCM as a CM solution provider and will add an entry to
m

This figure illustrates that Visual Studio has successfully located the SpectrumSCM registry
keys and has enabled SpectrumSCM as a CM provider. If other providers are registered on

e machine, they will be listed here as well. th

Dec 29, 2004 Spectrum Software Proprietary Page 8 of 36

 Integrating SpectrumSCM with Visual Studio .NET

5.0 Setting up a SpectrumSCM Project for the First Time:

ry of the
eps necessary to get a project up and running in SpectrumSCM can’t hurt either.

roject creation in SpectrumSCM is very simple. Follow these
eps to complete the task:

• software and login as a user with the

• inistration” menu and select the “Create Project Wizard”
menu item (Figure #8)

Figure #8

This subject really falls outside of the scope of this document, but a brief summa
st

While a Visual studio project name can be mapped to any SpectrumSCM project name, it is a
whole lot easier to synchronize the two right off the bat. Determine what the Visual Studio
project name for your new project is going to be and then proceed to create the exact same
project in SpectrumSCM. P
st

Start an instance of the SpectrumSCM client
appropriate privileges to create a new project.
Pull down on the “Adm

Dec 29, 2004 Spectrum Software Proprietary Page 9 of 36

 Integrating SpectrumSCM with Visual Studio .NET

Step through the seven items in the Project Setup Wizard and execute each step as you
go. When complete, a new project will have been created and completely configured.
The following are the individual steps presented by the Project Creation Wizard.

• Create Project Name: Enter the name for the new project and modify the repository

location if necessary.

Figure #8

• Create Mainline or Branch: Add the first generic6.

Figure #9

6 The word Generic and branch are synonymous in SpectrumSCM

Dec 29, 2004 Spectrum Software Proprietary Page 10 of 36

 Integrating SpectrumSCM with Visual Studio .NET

Press the “Add Generic” button and then click “OK” when the popup comes up. Set
the check out preference and the locking mode on the generic:

Figure #10

• Create and Assign Project Lifecycle: Assign the project’s life cycle and select the last

development phase:

Figure #11

Dec 29, 2004 Spectrum Software Proprietary Page 11 of 36

 Integrating SpectrumSCM with Visual Studio .NET

• Create User Roles and Permissions:

Figure #12

• Add Users to the System:

Figure #13

Dec 29, 2004 Spectrum Software Proprietary Page 12 of 36

 Integrating SpectrumSCM with Visual Studio .NET

• Assign users to the Project: Assign users to the project and associate each user with
one or more roles.

Figure #14

• Create additional Change Request Attributes: Add additional CR attributes.

Figure #15

Dec 29, 2004 Spectrum Software Proprietary Page 13 of 36

 Integrating SpectrumSCM with Visual Studio .NET

• Create the Initial CR: Now add the first CR to the new project so that a CR will be
available to add the new sources into the system from Visual Studio:

Figure #16

After following the directions outlined above, the new project is ready for use within
SpectrumSCM. The next step will be to actually create a Visual Studio project and to bind
that project to the same project name within SpectrumSCM. This was discussed in section
3.2 (Project Mapper Configuration)

5.1 Adding a Visual Studio Project to SpectrumSCM:

To add a new Visual Studio project to SpectrumSCM, start Visual Studio and create a new
project as usual. Once the project has been created, it can be added to source code control
right away, or can be deferred until a reasonable amount of code has been added to the new
project. Of course, if the project must be shared right away, then the project must be added
to source control immediately.

Because the new Visual Studio project is not yet bound to a source code control system, the
SpectrumSCM dashboard must be started manually. Once the Dashboard has been started,
and the new project added to source code control, the Visual Studio project will be
permanently bound to SpectrumSCM and the Dashboard will not need to be started

Dec 29, 2004 Spectrum Software Proprietary Page 14 of 36

 Integrating SpectrumSCM with Visual Studio .NET

manually again. To start the Dashboard for the first time, use the File->Source Control-
>SpectrumSCM menu item to launch the Dashboard. Figure #17 illustrates this action:

Figure #17

When the Dashboard starts, it will immediately post a login dialog box to the screen. Login
to the system using the user-id of the user that was assigned the CR created in the previous
section, e.g. if the new CR was assigned to user Joe, then login as user Joe:

Figure #18

Dec 29, 2004 Spectrum Software Proprietary Page 15 of 36

 Integrating SpectrumSCM with Visual Studio .NET

Because the Visual Studio project is not bound to a particular SpectrumSCM project at this
point, the user will need to use the Project Mapper to configure the association between the
project IDE and the SpectrumSCM repository project. See section 3.2 for details on how to
do this. Once the project association has been setup properly, the Dashboard project will
automatically switch to reflect the SpectrumSCM repository associated with the current
Visual Studio project.

Right click the “Connector DLL” solution in the solution browser, which is in the upper
right hand corner of the screen, and then pull down to the “Add Solution to Source
Control…” menu option:

Figure #19

When the user adds the solution, the Dashboard will automatically switch to the proper
SpectrumSCM repository and use the Local Root Directory entered in the Project Mapper
configuration to determine how much of each project path should be added to the
SpectrumSCM repository itself.

Dec 29, 2004 Spectrum Software Proprietary Page 16 of 36

 Integrating SpectrumSCM with Visual Studio .NET

The next two figures illustrate some of the messages that will be visible during the add
solution action:

Figure #20

Note that in the this figure, all of the files associated with the solution, including the project
file and the solution file itself we’re successfully added to source code control. The
Dashboard will now reflect the correct synchronization between itself and Visual Studio:

Figure #21

This boot strap activity only has to happen once. Now that the Visual Studio solution is
bound to SpectrumSCM as the CM provider, the Dashboard will be automatically started by
Visual Studio each time the user opens the solution. Also note that the Project selection
combo box on the Dashboard will be reduced to a single entry, which is the project that
Visual Studio is active against. When a new project is selected in Visual Studio, the
Dashboard will automatically switch over to the new project and reset the available generics
and change requests.

Dec 29, 2004 Spectrum Software Proprietary Page 17 of 36

 Integrating SpectrumSCM with Visual Studio .NET

Once the solution has been checked into SpectrumSCM, the solution browser in Visual
Studio will change the icons associated with the resources in the project to reflect the state
change:

Figure #22

Note the <lock> symbol next to each resource in the solution, including the project and the
solution itself. Visual Studio interviews the CM system from time to time to determine the
status of the files in the project. If Visual Studio can’t contact the CM solution for whatever
reason, there will be no icons associated with the resources. When a resource is checked out
by the current user or another user, the icon next to that particular resource will change to
reflect that status.

6.0 Visual Studio Standard CM Operations:

SpectrumSCM is a true SCM tool and as such uses an issue tracking system to associate code
changes with particular issues. When a user is working with a Visual Studio solution, he/she
will need to select a Change Request (CR) to work against. Each user may have one or more
CRs assigned to them at any time. Select the CR that corresponds to the current work
activity. Use the Change Request combo box on the Dashboard to select the proper CR.
Once a CR has been selected, the user is free to carry out their work as usual in Visual
Studio. As check-outs and check-ins are done in Visual Studio, the Dashboard will
automatically associate that work with the selected CR.

SpectrumSCM also supports concurrent work on multiple branches. Check to make sure
that the correct branch of code has been selected before beginning your work. Most large
scale development projects utilize multiple parallel code branches in order to allow work to
continue on several projects in parallel. Use the “Generic” combo box to select the proper
branch to work against. Note that the list of active CRs can and will change based on the
selected branch of code.

Dec 29, 2004 Spectrum Software Proprietary Page 18 of 36

 Integrating SpectrumSCM with Visual Studio .NET

6.1 Synchronizing the Workspace:

When multiple users work together, the CM repository will be updated from several
different sources simultaneously. Users must periodically refresh their local workspace in
order to be able to see new additions or changes that have been made to the system.
Individual files can be refreshed simply by right clicking on the file and pulling down to the
“Get Latest Version” menu selection. Entire directories, projects and solutions can be
synchronized by right clicking on the item and then selecting the “Get Latest Version
(recursive)” menu item. Visual Studio will automatically refresh all the files contained in the
upper level directory and all sub-directories.

To better control the synchronization process, select the directory, project or solution that
should be synchronized, then press the File->Source Control->Get… menu item. Visual Studio
will respond with a popup dialog which allows the user to select individual files for
synchronization:

Figure #23

Dec 29, 2004 Spectrum Software Proprietary Page 19 of 36

 Integrating SpectrumSCM with Visual Studio .NET

The user can select the individual files they want to synchronize or unselect any files that
they do not want synchronized.

If the user has a file already out for edit, and chooses to include that file in the
synchronization process, either intentionally or by accident, Visual Studio will complain that
the over-all action has failed and will post in the output window which files it succeeded in
synchronizing and which files failed. The next two figures illustrate this situation:

Figure #24

Figure #25

Note that the file “Connector DLL.cpp” failed to extract because it is writable. The rest of
the files were synchronized properly. The Solution browser also reflects the fact that the
connector file is out for edit by the user.

Dec 29, 2004 Spectrum Software Proprietary Page 20 of 36

 Integrating SpectrumSCM with Visual Studio .NET

When synchronizing the workspace from the Solution or project level, Visual Studio will
automatically add new files to the workspace or remove old files, based on the changes in
the project file itself.

Tip: Synchronize your workspace only after you have finished a unit of work, or
just before you check your work in. This will help to minimize any unnecessary
churn while you are completing a unit of work. Synchronize your workspace just
before you check in your work so that you can verify that your work is
compatible with the changes that others have made in parallel to your work.
Merge the work of others into your work, recompile the project and if everything
is working to your satisfaction, check in all of your work. See section 6.7 on
visually differencing your workspace files against the files in the CM repository

6.2 Check Out a File:

Individual files can be checked out by right clicking on the selected file and choosing the
“Check Out…” menu option. Multiple files may be checked out simultaneously by selecting
a range of files and then right clicking one of the selected files and choosing the “Check
Out…” menu option. When checking out multiple files at once, Visual Studio will respond
with a check out dialog that allows the user to customize the file selection:

Figure #26

Dec 29, 2004 Spectrum Software Proprietary Page 21 of 36

 Integrating SpectrumSCM with Visual Studio .NET

If one or more of the files in the selection is already out for edit by another user, Visual
Studio will respond with a notification informing the user why the files cannot be checked
out. The Output window of Visual Studio will also reflect the status of the operation:

Figure #27

6.3 Che

Checking
file or a
“Check I
a dialog b
Visual St

Upon su
the status
back to “

Dec 29, 20

ck In a File:

 in a single file or a selection of files is basically the same as checking out a single
selection of files. Select a single file or selection of files, right click and select the
n…” menu option. When multiple files are selected, Visual Studio will respond with
ox which allows the user to fine tune the check in. Or, in the case of a single file,

udio will proceed to check in the file.

ccessful completion of the operation, the Visual Studio output window will reflect
 of the check-ins and the Solution Browser will change the icons on the resources
locked” status.

04 Spectrum Software Proprietary Page 22 of 36

 Integrating SpectrumSCM with Visual Studio .NET

6.4 Automatic Check Outs:

Some Visual Studio operations will result in the automatic check out of some files from
SpectrumSCM. In particular, adding a new file to a project will result in Visual Studio
automatically checking out the project file in order to record the fact that a new resource is
being added to the overall solution. This happens in two phases. First Visual Studio will post
a popup so that the user can confirm the check out of the project file:

Figure #28

Then, once the project file has been successfully checked out (it might already be out for edit
by another user), the user can add the new resource to the solution. Remember to add some
content to the new resource before checking it into source control. SpectrumSCM will reject
check-ins of zero length files.

The user can also check the project file out directly first, and then add the new resource as
usual. This will prevent the user from having to enter the name of the new resource twice.

Tip: Always check the project file back in immediately after adding or deleting a
resource. This will allow other users to synchronize their work spaces and to add
new resources of their own.

Dec 29, 2004 Spectrum Software Proprietary Page 23 of 36

 Integrating SpectrumSCM with Visual Studio .NET

6.5 Extracting the Latest Version of a File:

The latest version of a file can be extracted by selecting the file, right clicking and then
selecting the “Get Latest Version” menu option.

6.6 Extracting a Previous Version of a File:

A previous version of a file can be extracted by using the File->Source Control->Get <filename>
menu option. Visual Studio will respond with a popup that allows the user to customize the
selection even though only one file has actually been selected. On pressing “OK”, a second
popup will be displayed which contains a selection of all of the selected file’s previous
versions. Select one of the previous versions and press “OK” to get that version of the file:

Figure #29

Previous versions of files cannot be edited. If the user needs to roll back to a previous
version of a file, the file needs to be checked out and the contents of that file need to be
replaced with that of the earlier file.

Dec 29, 2004 Spectrum Software Proprietary Page 24 of 36

 Integrating SpectrumSCM with Visual Studio .NET

6.7 Visually differencing the Workspace File:

The SpectrumSCM SCCI integration includes a 2-way file differencing engine that can
visually display the differences between files in the SpectrumSCM repository and files in the
user’s local working directory. To access this feature, simple select the file, right click and
hold to get the secondary menu and then select the “Compare Versions…” menu item.
Visual Studio will retrieve the repository file and start the SpectrumSCM Diff/Merge tool
automatically:

Figure #30

In this example, the file on the left is the file in the users local work space and the file on the
right is a representation of the file in the repository. The green color bar indicates that 4 lines
have been added to the file in the repository that don’t exist in the file from the local work
space. The diff/merge tool can be instructed to diff the two files in one of two directions.
When running the diff from left to right, the tool will display operations that need to take
place on the file on the left to make it look like the file on the right. When running the
difference engine from right to left, the same thing happens but in reverse. In this case the
green bar changes to a red bar when the direction of the difference changes. When lines in
the diff/merge tool are in direct conflict, they will be displayed in yellow. This list
summarizes the colors the tool can display and what each color indicates:

• Red: These lines do not exist in the other file and should be deleted.
• Green: These lines do not exist in the other file and should be added.
• Yellow: These lines are in direct conflict and should be changed.

The right hand editor always represents the file from the repository. It is not the actual
repository file but a temporary file that can be edited, saved or discarded. The diff/merge

Dec 29, 2004 Spectrum Software Proprietary Page 25 of 36

 Integrating SpectrumSCM with Visual Studio .NET

tool also contains a subset of standard editor functionality including cut, copy, paste, search
and replace, save and print.

6.8 Adding a New Resource to Your Project:

As previously documented in section 6.4 on automatic check out, adding a new resource to a
Visual Studio project operates in two distinct phases. In the first phase, the project related
files must be checked out. In the second phase, the new sources can be added to the system.
It is a best practice to check the project related files back in immediately after the new
resource has been added so that other users will have access to those files. Use the “Pending
Checkins” Visual Studio window to view and select the files for check-in, then press the
check in button to activate the check-in operation.

Figure #31

In this example, the project file has been selected for check-in. The new resource file,
ObserverPattern.cpp has been de-selected so that work can continue on this file. When the
user presses the “Check-In” button at the top left of the screen, the project file will be
checked back into the repository and the new resource will be left checked-out.

6.9 Removing a File:

Removing a file is very similar to adding to new file. When a resource is selected for removal
by the user, Visual Studio will inform the user that the project related files must be checked
out first. Once the project file has been checked out, the user will be able to successfully
delete the resource. Files that are removed from a Visual Studio project are not automatically
deleted from the SpectrumSCM repository. Deleting files from the source control repository
is a privileged operation, which ensures the sanctity of previous builds and releases. Only a
SpectrumSCM user with the appropriate permissions can perform this operation. To remove
a file permanently from the repository, the user must use the SpectrumSCM client and either
hard or soft delete the file in question. Files that are involved in a previous release cannot be
permanently deleted from the repository. Files that have never been associated with a release
can be permanently deleted. In either case, files can be “soft” deleted in the repository. Soft

Dec 29, 2004 Spectrum Software Proprietary Page 26 of 36

 Integrating SpectrumSCM with Visual Studio .NET

deletion removes the file from the users view but can also be retrieved at a later date, if
necessary.

To soft or hard delete a file from the SpectrumSCM repository, open a SpectrumSCM client,
select the file in question and then click the Administration->Delete… menu item. The system
will respond with a popup that allows the user to choose the type (hard or soft) of deletion.

Figure #32

Files that have been soft deleted can be retrieved by using the “Delete Log” facility on the
SpectrumSCM client main screen. Delete log presents to the user a list of items that have
been deleted, their status (whether they can be retrieved or not) and the user-id of the person
that actually deleted the resource. Soft deleted resources can be retrieved by selecting the
resource and pressing the “UnDelete” button.

6.10 Switching Projects:

Visual Studio allows the user to have several projects open at one time, either through the
same instance of Visual Studio or by allowing the user to start separate instances of the
product. To open another project within the same instance of Visual Studio, navigate back
to the “Start Page” and simply select the next project to work on. Visual Studio will
automatically tell the SpectrumSCM Dashboard to switch the user to the selected project

6.11 Output Messages:

There are several different ways that Visual Studio communicates with the end user. The
Visual Studio Output window, located on a tabbed frame at the lower left of the primary
window, is the primary output message area for all CM related activities. An example of this
is illustrated in section 6.2 of this document.

Hard errors and warnings are presented to the user as standard Visual Studio error or
warning message dialogs. The Dashboard can also present error message dialogs directly to
the user, but only under the most serious of circumstances. For instance, if the Dashboard
becomes disconnected from the SpectrumSCM server, the Dashboard will post an error
dialog describing the problem.

7.0 Working with the Dashboard:

The primary advantage of working with the SpectrumSCM Dashboard, is that it helps to
reduce the number of extra popup windows that the user must navigate through during the
course of their normal development activities. The Dashboard is essentially a reduced

Dec 29, 2004 Spectrum Software Proprietary Page 27 of 36

 Integrating SpectrumSCM with Visual Studio .NET

functionality version of the main SpectrumSCM client program. The Dashboard allows the
user to work directly with Change Requests and it also allows the user the ability to quickly
switch between code branches.

7.1 Logging in:

The Dashboard will automatically prompt the user for a login and password if one has not
been entered for the current working session. The user also has the ability to temporarily
release the server side license when it is not needed. For example, when the user needs to
run both the Dashboard and the standard SpectrumSCM client program at the same time,
but only wants to consume a single license, the license for the Dashboard can be temporarily
released. Any new activities issued against the Dashboard will automatically cause the
Dashboard to reinstate the suspended license. See section 7.8 on releasing the server side
license.

7.2 Selecting Branches:

Users often switch between branches of code during the normal work day. The Dashboard
makes switching between code branches a simple operation.

Tip: Always check to make sure your current work is checked back in
before switching to a new branch. If files are left checked out when a new
branch is opened, the status of the files in the solution browser will not
match the actual file status.

Use the “Generic:” combo box to select a branch to work on:

Figure #34

In this example, the “Mainline” generic7 has been selected for work. When the user selects a
new generic, the list of change requests assigned to the user automatically switches to the list
of CRs assigned to the user, on the selected generic. The user should immediately
synchronize their workspace with the repository since the project file and the contents of the
branch may be different from what’s in the user’s workspace. See section 6.1 on
synchronizing the workspace to the repository.

Dec 29, 2004 Spectrum Software Proprietary Page 28 of 36

7 The word “Generic” means “Branch” in SpectrumSCM.

 Integrating SpectrumSCM with Visual Studio .NET

7.3 Selecting Change Requests:

All work done against a SpectrumSCM repository must be done against a Change Request.
This is done for accountability reasons and, more importantly, so that releases can be formed
around sets of issues and not just labels applied across the CM repository. In essence, a list
of CRs in a release forms a bill of materials (BOM) for that release. Working with change
requests is very easy. Simply select the CR to work against and the Dashboard will do the
rest. Once a CR has been selected, all the work done by the user will be automatically
associated with the selected CR.

Tip: Users should group their work together into a series of CRs instead of
placing all of their work into a single CR. This becomes much easier in the
later phases of development as bugs or new features can be broken down
into separate CRs.

Use the Change Request combo box to select the CR to work against:

Figure #35

Change Requests can have several icons associated with them in the combo box. The “Gem
Clip” icon informs the user that “attachments” have been added to this CR. The “Green A”
icon simply tells the user that this CR is assigned to them. On the SpectrumSCM client main
screen, the green “A” icon can also appear as a yellow “T” for Generic Engineers and
Project Leaders. The Yellow icon indicates that the CR is in the TBA8 state and needs to be
assigned for work.

8 TBA = To Be Assigned state. When users progress a CR out of a state the CR is automatically sent to the
TBA state and e-mail is sent to the appropriate users. It is the responsibility of the Generic Engineer or
Project Leader to assign the CR to the next person in the appropriate phase. If automatic workflow is
enabled all of this will happen automatically behind the scenes.

Dec 29, 2004 Spectrum Software Proprietary Page 29 of 36

 Integrating SpectrumSCM with Visual Studio .NET

7.4 Progressing Change Requests:

Users can move change requests out of their change request work list by pressing the

progress icon, which is located to the right of the change request combo box. The
progress icon invokes the change request progression screen illustrated in the next figure:

Figure #36

The progression screen allows the user to add additional notes to the selected CR, add, view,
delete CR attachments and add modification information to the CR. Notes and attachments
can be added to the CR at any time without having to progress the CR out of the users list of
active CRs.

To add a new note to the selected CR, use the “Add Note” icon located in the tool bar at the
top of the window. The user will be presented with a small popup that allows them to add a
note of any length to the CR. When the popup is closed, the note will be permanently
associated with the CR. CR notes are immutable.

Dec 29, 2004 Spectrum Software Proprietary Page 30 of 36

 Integrating SpectrumSCM with Visual Studio .NET

To add an attachment to a CR, use the attachment portion of the progression screen:

Figure #37

Attachments are not versioned items in SpectrumSCM, they are simply items associated with
a CR that may or may not be plain text. In this example the attachment is an ASCII text
attachment, but attachments are not limited to text files. Screen shots, Word documents and
other types of binary files can also be attached. The user’s custom editor preference will
dictate how these attachments are viewed by the user. On the Windows platform, users
should elect to use the default “regassoc” custom editor. Regassoc is not really an editor, it is
a hook into the Windows registry that allows Windows to decide how a document should be
opened and presented to the user.

Finally, when the user has added any additional notes, modification notes or attachments,
the user can press the “Progress” button located at the bottom of the screen to invoke the
progress action. Once the CR has been progressed, it will disappear from the users CR list.

Dec 29, 2004 Spectrum Software Proprietary Page 31 of 36

 Integrating SpectrumSCM with Visual Studio .NET

7.5 Executing a Change Request Report:

The icon, when selected, executes the SpectrumSCM Change Request report against the
selected CR. The CR report dumps all the associated information for the selected CR into
HTML output text. The report can be viewed through the standard SpectrumSCM HTML
report viewer, or can automatically displayed in Internet Explorer, Netscape or any other
HTML viewer. To use a viewer other than the default viewer, select Edit->Preferences->Custom
Report Viewer on the SpectrumSCM main display and enter the path to the viewer of choice.
The following example illustrates part of the output for a CR report displayed in the
standard report viewer:

Figure #38

Dec 29, 2004 Spectrum Software Proprietary Page 32 of 36

 Integrating SpectrumSCM with Visual Studio .NET

7.6 Executing a File History Report

The File History Summary report details all the previous activities for the selected file. The
detail includes the files previous version numbers, information about the editor for each
particular version of the file, the date the change was made and the change request used to
make the change. To run the summary report, select a file in the Solution Browser and then
select File->Source Control->History… The report viewer will display the report in a separate
window. Figure #35 illustrates and example of the report output window contents:

Figure #39

The report window, like all the other Dashboard windows run separately from Visual Studio
and thus can sometimes become obscured by Visual Studio main window. After executing
this report, if the window does not automatically pop to the surface, check the Windows task
bar and bring the report forward. This is illustrated in figure #36:

Figure #40

Dec 29, 2004 Spectrum Software Proprietary Page 33 of 36

 Integrating SpectrumSCM with Visual Studio .NET

7.7 Adding Notes to a Change Request:

See section 7.4 on CR progression for a detailed description of how to add notes to a change
request.

7.8 Adding/Viewing/Deleting Change Request Attachments:

See section 7.4 on CR progress for a detailed description of how to add attachments to a
change request.

7.9 Releasing the Server License:

Because a SpectrumSCM Dashboard user might also need to use the full SpectrumSCM
client software, the Dashboard has the ability to temporarily release the server side license.

The icon allows the user to temporarily drop the server side license. The license will be
automatically reinstated when the user activates a CM related request from Visual Studio.

7.10 Refreshing the Project:

The SpectrumSCM Dashboard operates just like a web browser when it comes to accepting
updates from the SpectrumSCM server. All updates to the Dashboard must be requested by

the user by selecting the refresh icon. When the refresh action is selected, the
dashboard will contact the SpectrumSCM server and download the following items:

• Additional projects, or new project assignments
• New generics
• New or reassigned Change Requests

This operation is under the control of the user because it is a fairly expensive operation to
run from a bandwidth perspective. In a large organization with more than a handful of users
attached to the SpectrumSCM server at one time, it would be prohibitively expensive to
automatically “push” this type of information to the client on a regular basis.

The user should use the refresh capabilities of the Dashboard periodically to refresh their
CR and generic lists. E-mail notifications are always sent to a user whenever CRs are
assigned. The user can use the e-mail notification as a prompt to refresh the project.

Dec 29, 2004 Spectrum Software Proprietary Page 34 of 36

 Integrating SpectrumSCM with Visual Studio .NET

8.0 Summary:

The SpectrumSCM SCCI Implementation (SpectrumSCCI) is a fairly unique implementation
of the Microsoft Common Source Code Control Interface Specification. Specifically, because
of the tight integration between the SCCI and the SpectrumSCM Dashboard, users can use
almost all of the features of SpectrumSCM that make it a truly integrated SCM system,
directly through Visual Studio.

• The ability to associate work directly with a traceable change request document not
only allows the developer to organize their own work, but it also allows project
engineers and development managers the ability to track and control the progress of
the total development effort.

• Releases of the product are based on collections of known units of work and not
just collections of files with various revision numbers.

• Previous releases of products can be easily extended to create patches or customized
versions.

• Users can easily work in parallel on separate branches of the code and can switch
between development branches through the selection of a menu item.

• Users can quickly switch between entire projects or can run multiple instances of
Visual Studio in parallel, without having to reconfigure their CM integration
parameters.

9.0 Known Issues:

Currently the SpectrumSCM SCCI integration does not support the following Visual Studio
menu selections:

• File->Source Control->Add Project From Source Control… This option is
supposed to allow the user to pull resources from one Visual Studio project into
another. This operation is not directly supported. To perform the same functionality,
use the SpectrumSCM client to download the required project items and then add
the items to the project as usual.

• File->Source Control->Open From Source Control… This option allows the
user to open a Visual Studio project directly from source control. The option is not
supported at this time. To perform the same functionality, use the SpectrumSCM
client to download the project and then double click the solution file.

For additional information on SpectrumSCM please visit our website at www.spectrumscm.com.

Or contact Spectrum Software at 770.448.8662

Dec 29, 2004 Spectrum Software Proprietary Page 35 of 36

http://www.spectrumscm.com/

 Integrating SpectrumSCM with Visual Studio .NET

Dec 29, 2004 Spectrum Software Proprietary Page 36 of 36

