SpectrumSCM Concepts and Usage

Spectrum Software, Inc.
11445 Johns Creek Pkwy.
_— Suite 300
Duluth, GA — 30097

WWwWw.spectrumscm.com

Subject: SpectrumSCM Concepts and Usage

Issue Date: April 6™, 2005 From: William C. Brown
corey@spectrumsoftware.net
(770)448-8662

1.0 What is SpectrumSCM?

SpectrumSCM is a truly integrated Source Configuration and Management (SCM) solution that encapsulates
the fundamentals of good configuration management, including Version Control, Issue tracking/Change
Management, Process Management and Release Management into a single tool. Unlike some competitive
products, SpectrtumSCM is not a collection of independent CM related tools that have been integrated or
interfaced together. In contrast, SpectrumSCM is a truly integrated tool, built from the ground up on a
foundation of solid Source Configuration and Management fundamentals. SpectrumSCM’s functional
components work together to provide the end user with the information and tools that they need to implement
solid, industry accepted best practices for Source Configuration and Management within their organizations.
SpectrumSCM can easily answer the following questions:

What: What sources were changed?
When: When did the sources change?
Who: Who changed the sources?
Why: Why were these sources change?

It’s important to understand that most CM tools, even simple VC (version control) tools, can answer the What,
When and Who questions, but most tools fail completely to answer the Why question, which unfortunately
also happens to be one of the most important questions. Without understanding Wy the sources have
changed, it’s almost impossible to determine the full scope of What has gone into any particular release of a
product.

2.0 SpectrumSCM Concepts

SpectrumSCM is an issue based Source Configuration and Management solution. This means that all changes
to repository resources are associated with a series of Change Requests (CRs) that are later used to build
physical releases of the end product. Change Requests answer all of the What, When, Who and Why questions
outlined above. Change Requests represent complete units of work that flow through a user defined Software
Development Life Cycle (SDLC) toward a well defined end goal.

Figure #1
Change Request #1710 »
Development Unit Test Integration Test System Test Production

Figure #1 depicts a single developer working within the Development phase of a softwate development life cycle.
As the developer completes his/her wotk, the work is promoted along the SDLC towards the Production end

April 06, 2005 Spectrum Software Proprietary Page 1 of 22

SpectrumSCM Concepts and Usage

goal. At each phase along the way, the unit of work encapsulated within the Change Request is tested and is
either promoted to the next phase or is demoted back to the development phase. The granularity of the work
encapsulated within a single CR will change depending on the overall state of the project. For instance, in the
eatly stages of development, the amount of work encapsulated within a single CR may be rather large, e.g. the
definition of an entire feature. And in the later stages, such as the testing phases, changes associated with a
single CR may only encapsulate a simple bug fix to a single file.

As Change Requests are promoted through the system, they tend to accumulate toward the end of the SDLC.
It is at this point that each individual CR may or may not be included within a production release of the system.
The decision to include or exclude a CR is left up to the development team or release management but may
also be influenced by customer expectations or moving target delivery dates.

In the SpectrumSCM model, the promotion of work along the SDI.C is mostly logical instead of physical. This
is in contrast to other CM systems that use a branching model to indicate state, as in the following example:

Figure #2

‘ Developer 1

‘ Developer 2 Integration Test H System Test }—»‘ User Acceptance Test

‘ Developer 3

In this example, developers promote code from individual branches into an Integration Test branch. Later the
code is then promoted to the System Test branch and then finally to the User Acceptance branch. There are
several problems associated with this type of approach:

e Reliance on physical entities: While some stages within the SDLC like Integration Test, System
Test and User Acceptance Test can be represented by separate physical branches, there are usually
other phases within the SDLC that cannot be represented as a physical object. For instance, the
SDLC may include phases for CCB (Change Control Board) review, have sign off points for
approvals or even integration points with upstream and downstream systems. These types of activities
require traceable entry and exit criteria that cannot be represented through a branching model.

e Reliance on merging: In the physical promotion model, the end user is required to do several levels
of manual merging between the streams. In the best case, automatic merging! can be used to merge
file content from one branch to another, in the worst case, manual merging is required. The more
merging that must take place, the greater the opportunity for error.

e Lack of Change Management: Without proper Change Management (issue tracking) there is no
way to answer the What and Why questions. For instance, the model above allows developers and
system engineers the ability to see the versions of the files that are available on any particular branch,
but the fundamental question of Why that work is there and What that work actually represents is
missing altogether.

e Lack of file level dependency checking: Changes promoted from the development branches into
the Integration test branch develop interdependencies immediately after the metge/promotion
operation has been completed. These interdependencies must be promoted simultaneously or the risk
of promoting feature fragments into the later stages of testing becomes highly likely. In the best case,
feature fragments can cause the system to fail to build. In the worst case, the system builds and the
promotion of untested features can make their way into a production release. In other words, either
everything needs to be promoted from one branch to the next or nothing should be promoted at all.

' Automatic merging is based off of a line oriented merging technique and is not always 100% accurate.
Care must be taken when using an automatic merging facility to verify that the merged code is still
semantically as well as syntactically correct.

April 06, 2005 Spectrum Software Proprietary Page 2 of 22

SpectrumSCM Concepts and Usage

In the SpectrumSCM model, developers may work together within a single branch line, or may work
independently of each other on parallel branch lines. Because the system does not impose a workflow model
based on branch hierarchies, the development team is free to use other branching patterns to resolve unique
project related problems. A white paper exists on the SpectrumSCM website that details just a few of the
branching patterns that users of SpectrumSCM can easily implement. Please see www.spectrumscm.com for
more details.

2.1 Change Requests

SpectrumSCM is basically a change management/issue tracking system first and a configuration management
system second. The change management system built into SpectrtumSCM provides the tool with a solid
foundation from which to support proper configuration management.

Change Requests in SpectrumSCM are used to encapsulate work done by developers into individual units of
work. This kind of encapsulation can be viewed as a form of Change Set functionality, but change requests are
not referred to as Change Sets simply because the functionality provided by SpectrumSCM is far more
powerful. Most tools that implement change set functionality do so in an anonymous fashion. In these tools
unless the change set is created ahead of time, an anonymous change set is created and the work is assigned at
check in time. Change sets are then used to guarantee that the pending action completes in an atomic fashion
and that the change set can be used at a later date for simplistic reporting needs. SpectrumSCM takes the
concept to the next level and enforces the association of an actual issue to the physical unit of change
completed by the developer.

Change requests flow through a user defined development life cycle to one or more end goals. As mentioned
above, unlike most other CM systems, change requests are used as input into the release management system.
Instead of relying on time sensitive labels, releases in SpectrumSCM are comprised of a series of change
requests specifically assigned to a particular release. Change requests can be quickly and easily added to or taken
from unlocked releases. This gives the development team an incredible amount of flexibility control over what
and when a unit of work is physically assigned to a release.

All work performed on configuration items held within the SpectrumSCM repository is done relative to a CR
(change request). A user must have a change request assigned to them before check out for write activities can
successfully proceed. Based on the user’s role within the project, the user may or may not have the ability to
create change requests for themselves. If a user is not allowed to create their own change requests, they must
rely on other users such as project leads or senior developers for the creation and assignment of change
requests.

Change requests are comprised of the following components:

¢ Header: The CR header is a single line description of the issue itself. In the tool the CR header is
usually displayed along with the CR number anywhere where the CR itself is visible.

e Description: The CR description is a multi-line textual description of the issue itself. The description
is entered by the user during the creation of the CR and can be adjusted at a later date.

e Attributes/Value: CR attributes and values are used to captute requited information associated with
each CR. Each CR attribute can have a pre-defined set of possible values and can be marked as
editable so that the user can enter free form text.

e Attachments: CRs can have multiple attachments assigned. Attachments can be added, viewed or
deleted at any time.

e History: Each CR flows through the user defined development lifecycle to one or more end states.
As a change request traverses the SDLC, the entry and exit information about each phase that a CR
has passed through is recorded directly in the change request itself.

April 06, 2005 Spectrum Software Proprietary Page 3 of 22

SpectrumSCM Concepts and Usage

2.2 SDLC and Workflow

As mentioned in the previous section, change requests flow through a user defined SDLC or software
development life cycle within SpectrumSCM. Lifecycles are created and held at the system level and thus can be
reused as often as necessary. Each project in a SpectrumSCM repository can have a separate and unique life
cycle. Once assigned to a particular project, the life cycle can be specialized by adding or subtracting life cycle
phases in order to fit the particular needs of the project.

By default, change requests flow through a project’s lifecycle in a linear fashion with ad-hoc adjustments. A
change request can be created in any phase within a lifecycle and can be assigned to any other phase within the
life cycle. As an example, a change request may be created during system testing and assigned back to any other
state within the lifecycle, regardless of the connectivity between life cycle phases.

The flow through a life cycle can also be automated to enforce a strict traversal of states within a lifecycle. This
is done by simply plugging in one of the supplied workflow engines directly into the SpectrumSCM server. The
SpectrumSCM workflow engines are XML driven and can thus be easily customized to work with any defined
SDLC. The transition of change requests through the life cycle is controlled by the exit and entry criteria
defined in the XML workflow template. End users can use to the template to not only drive the workflow
process, but can also use the template to drive external business logic. For instance, the workflow engine can be
used to send e-mail notifications based on change request promotions and can also be used to modify change
requests attributes and select the next assignment phase and user.

Finally, where the generic workflow engine leaves off, the SpectrumSCM API picks up, i.e. where the general
wotkflow is static, an API defined SDLC can be dynamic. End user organizations can use the SpectrumSCM
API to create extremely robust workflow engines and business system connectors. Once created, a workflow
engine can be added to a running instance of a SpectrumSCM server without causing a service interruption.

The following diagram illustrates a simple example lifecycle and the insertion points at which a generic or
custom built workflow engine would be called.

Figure #4

To Be Assigned

Requirements Test

Assign To Release

Create &R \ [/
Workflow Engine

April 06, 2005 Spectrum Software Proprietary Page 4 of 22

SpectrumSCM Concepts and Usage

The Yellow “To Be Assigned” state is known as the TBA super state. This state, along with the Completed and
Killed states are automatically associated with each user defined life cycle. The TBA state is used to temporarily
hold change requests that have been promoted out of a specific state but have yet to be assigned to another
state. By default, when a user of SpectrumSCM promotes a change request out of their workspace, the change
request is automatically promoted into the TBA super state. This behavior can be changed when a generic or
specific workflow engine is applied to the server.

2.3 Release Management

Releases in SpectrumSCM ate formed by adding individual CRs into a first class release object. In contrast,
most other CM systems rely on a label based approach to associate work with a particular release. The action of
applying a label to existing work is a very time dependent operation. When a label is applied to a repository, it
is applied to all files in the repository regardless of the state of those files. At any point in time, some files
within the repository will represent work that has been completed and is actually ready to be released, while
other files may represent work that has not been completed and is not ready to be released.

SpectrumSCM’s release management system is time independent. Work encapsulated within a Change

Request can be added or removed from a release at any time regardless of the state of other work items within
the system.

Figure #5
12k SpectrumSCM - Create Release M=) %
File Action Help
R Close a MNews % Delete
Praject: TEST Generic: {Mainline_i:j Release: @ Release 1.0 |V,
|Avai|ab|e CRs SORT ‘ ‘ Release CRs |
:V TESTOQ0004 - Resalve problem with combobox listeners] \? TESTOOQ00L - Load sources el
‘v TESTOOO00Z - Change focus manager in GUT
i? TESTO00003 - Fix problem with server log feature,
| iv TESTOOO00E - Add XML mapping feature for installation. -
Iv] v|
CR Report | CR Dependency Report | CR WBS Repart | Message Area|

200501730 16:04:43 &

Change Request Report for TEST000002

Project TEST
CR Mumnber . TERTO00002

Header : Change focus manager in GUI

In this example four (4) CRs have already been added to the “Release 1.0” release. Each of the CRs in the
release is in a state within the SDLC that permits the Change Request to be added to a release. CR #4, in this
case is still in the Development phase and is thus ineligible to be applied to a release. CRs 1,2,3 and 5 ate
“oreen flagged” and thus are eligible to be placed into a release. All five CRs represent work that is currently
available in the system on a particular branch but at different phases within the SDLC.

April 06, 2005 Spectrum Software Proprietary Page 5 of 22

SpectrumSCM Concepts and Usage

Figure #6

12k SpectrumSCM - Create Release =EEd
File Action Help

x Close m Mew 88 Delete
Project: TEST Generic ![Mainline_i"i Release: [‘% Release 1.0 IVJ

Available CRs ‘ Release CRs

9 TESTO0000! - Load sources [L
q TESTO00002 - Change focus manager in GUT

w TESTO00003 - Fix problem with server log feature,

V TESTO00004 - Resolve prablem with combobox listeners

v TESTOO00005 - Add XML mapping feature for installation,

v v

CR Repor‘fi CR Dependency Report I.CR WEBS Repart| Message Area

B

|
File Version | Dependent CR. 222:;‘1““ CR state | Indirect dependent CRs
scimicomnandlingbActivateCommandline java | 1.2 TESTO00002 11 Develop
ditio 1.2 TEST000001 ||1.0 Test =
scmicommandlineAddNote java 1.1 TESTO00001 ||1.0 Test i I|

In this example Change Requests 1, 2 and 3 were all used to edit the exact same file. The Release Management
facility has detected that there are file level dependencies between the three CRs, and has color coded them
accordingly. In this case CR #1 has a green flag status and is actually ready to be included in the release. CR #
2 is red flagged, which is an indication that the CR is still in one of the early phases of the SDLC, and CR #3 is
color coded yellow. A yellow flag is an indication that a file level dependency exists between one or more of the
CRs in the system. In this example, CR #3 depends on work that was done using CR #2, thus setting up a
dependency between the two CRs. The dependency reportt listing at the bottom of the snapshot shows the files
associated with CR #3 and their relationship to other file versions within the repository. Once the dependency
has been resolved, CR #3 will be “green flagged” and will be allowed to be placed into the release. Resolving
the dependency involves promoting CR #2 into a releasable state.

In all cases, once a series of change requests have been associated with a release, the information concerning
that release is available in the form of several reports. The most important of which is the bill of materials
report or BOM. The bill of materials report quickly and accurately answers the most important questions
concerning the Who, What, When and Why of features and bug fixes that have been added to the system.
Like all of the reports found in SpectrumSCM, they can be published directly as HTML and thus can be quickly
and easily incorporated into internal or external websites.

April 06, 2005 Spectrum Software Proprietary Page 6 of 22

SpectrumSCM Concepts and Usage

2.4 Branching

Because physical branches in SpectrumSCM don’t have to be used to simulate a logical promotional model,
developers are free to create a branching model that can actually be used to solve difficult configuration
management problems. A prime example of this is the use of branching to support true parallel development.
For instance, suppose Company XYZ builds and sells a cross platform editing tool, and this editor is expected
to work on at least three different operating systems. The vast majority of the sources that comprise the editor
are identical for each supported platform; we can say that these files are common across the three platforms.
There are also a set of files that are specialized for each individual platform that the editor runs on; we can say
that these files are uncommon or have been specialized for each platform that the editor runs on. When bugs
are found in the editor, or new features are to be added to the editor, the changes may all be localized within
the common files, or some of them may have to be specialized for each platform. Now suppose that the
development of the editor product has been broken up into three individual branches. Each branch supports a
particular target platform. With most simple version control tools, the developers make changes to the system
by first adding the changes to a particular branch and then either integrating or merging the changes into the
other branches. The additional steps requited to merge the changes from one branch to the next opens up
opporttunities for errors, additionally, thete is nothing to actually indicate that the changes have actually been
merged from the original branch to the other branches. SpectrumSCM improves on this scenario by allowing
files to be shared across multiple branches simultaneously. It also allows files to be edited across multiple
branches simultaneously. In the example above, when changes need to be added to the editor, if those changes
are all localized within the set of common files, then the changes only need to be applied once and are
immediately visible on each branch. The Change Request used to make the changes is also immediately visible
on all of the shared branches and is available to be placed into a release. There is never any question about
whether the files were added to the additional branches, the Change Request information proves that the files
have indeed been shatred across all of the branches.

Figure #7

S5 Sh UMIX Branch

k A - = MAC Branch

Change Request #5

Change Request #

In this example there are three parallel branches. Each branch holds the source resources of the editor for a
particular platform. Two Change Requests have been used to edit the files associated with the branches. In this
case, CR #5 has been used to edit four (4) files, all of which are common across all three branches. CR #6 was
used to also edit four (4) files, two of which are specific to the MAC branch and two of which are common to
all of the branches. Both CRs are visible on each branch and can be included in a release. When CR #6 is
added to a release on the Windows branch and also on the MAC branch, the release management system
within SpectrumSCM determines which files associated with the CR should be extracted for release on each
branch. When the release is extracted on the Windows branch, files F8 and F9 are extracted. When the release
is extracted from the MAC branch, files S1, S2, F8 and F9 are extracted. CR #6 was used to fix a bug on the
MAC branch that spanned all three branches but also required changes to MAC specific files.

April 06, 2005 Spectrum Software Proprietary Page 7 of 22

SpectrumSCM Concepts and Usage

SpectrumSCM also supports merging changes from one branch to another, but can also go the extra step to
physically combine two separate files. For instance, a simple example is a developer working alone on a set of
files within a private sandbox branch. The changes that the developer makes are all uncommon and are thus
isolated from the other users of the system. When the developer is ready to share his work with the rest of the
team, he has two choices; he can either merge the changes into another branch or he can physically re-
common the specialized files so that they are, once again, shared amongst all or some of the other branches in
the project.

Figure #8

iz SpectrumSCM 3Way-Merge =JoEd
File Action Edit Search Syntax Highlighting Help

XO OuAHd XD AD B
| Scm2 java: [3.0] Serml.java: [1.0] {Merge target-é :-Scm.java.orig: [2.0]{Coamman ar;

pacrays Suwe L TPOLRagT Sou, |‘j
] =

~
import java.awt.*;

import java.awt.*:
import java.awt.ewvent.¥;
import java.io.®;
import java.het.®;
import jawva.rmi.*:
import java.rmi.serwver.®;

import java.awt.ewvent.¥;

import java.io.®; import java.awt.) import java. ecurity.*:
inport java.net, ¥ inport java.awt. ewvent.*: inport javax.swing. *;
import java.io.®; import Jjavax.swing.JOptionPane
_ import java.net.®; import jawva.lang.reflect,®;
import java.rmi.¥; import java.rmi.¥;
import java.rmi.server.®; import java.rmi.server.®; d A4 Hello
import java.security.®: import java.security.®: f
import javax.swing.¥; import javax.swing.¥; f import scm.implementation.®;
import javax.swing. JoptionPane; import javax.swing. JOptionPe f' import zcm.interfaces.®;
imnport java.lang.reflect.*; import java.lang.reflect.*; f inport Scm.presentation.
f import Scm.presentation.mngelCr
A4 Helloy f
inport scm.implementation. ®: | inport scm.implementation. *: import scm.presentation.Tserdc
v v v
(] fm | [EJ (] | L)] (] il | [
ILine: 14101 IRead—OnIy IInactive |Line: 1/96 |Writab|e IInactive |Line: 1/90 |Read-0n|y IInactive

There are two ways for a developer to merge or re-common files. The snapshot in figure #8 depicts the
SpectrumSCM 3-way merge tool in action. In this tool the user is able to see the changes to both branch files as
well as changes of each branch file relative to the common ancestor of both files. By swapping the positions of
the first two edit panes, the user can quickly review the changes to cither branch file relative to the common
ancestor. Change blocks can be applied to the target editor by right clicking within a change block and then
cither apply the entire change or just a subset of the change. The tool also supports the ability to automatically
merge all of the changes from one editor into the other.

SpectrumSCM supports three different physical branch types. These branch types can be used in multiple ways
to implement different branching patterns.

e Ancestor/Descendent Branches: This branch type can be used to quickly and easily setup parallel
development streams against any existing branch. There is no limit to the number of parallel streams
that can be created in parallel to an existing stream.

e Vendor Branches: This type of branch can be used to maintain a code base that is related to, but not
directly associated with the overall project. As an example, a vendor branch can be used to maintain
source or binary distributions of third party libraries.

April 06, 2005 Spectrum Software Proprietary Page 8 of 22

SpectrumSCM Concepts and Usage

¢ Release Branches: Release branches are branches formed directly from releases that are already
defined in the system. For example, a development organization may need to branch from a previous
release of their product in order to patch and then re-release the product.

2.5 Testing Support

The ability to accurately test a software project depends on the CM system’s ability to properly identify What
versions of the configuration items are in each stage of testing and Why those items ate there in the first place.
Simple label based systems cannot provide enough detail to identify the individual items that ate supposed to
be in integration test versus those items that are supposed to be in system test. In contrast, because
SpectrumSCM is an issue based system, the system knows exactly what items are supposed to be in each testing
phase, why those items are there, and can easily extract those items into individual testing areas.

Figure #9

Iz SpectrumSCM - Create Interim Release [[=1(3
File Action Help

x Close CR Report CR Dependency Repart

Phasze: éIn‘regr‘a’rion Test iv: Dependency Checking Create BOM [Deltas Only [Collect CRS] ’Ex‘rr‘ac‘r Files

rRejected CRs | [FQualified CRs

||CR State Header I |CR State Header
| TESTOO0004 |Inteqration Test |Resolve server hang issue || ||[TESTOOOOOS |Inteqration Test |Add new chapters to user quide
| |ITESTOO0006 |Integration Test |Implement new caching algarithm
||ITESTOO0007 [Inteqration Test |[Combobox refresh issue

f’TESTOOOOOB System Test Customer reported problem with install
| TESTOO0002 |System Test Add logging messaqes to routines

:fTESTOOOOlO System Test Clean up some coding standard wviolations

CR Report| CR Dependency Repart| Qutput |

hange Request collectar running.. |
Located CR: TESTOO0004 [
Located CR: TESTOOO0005 L
Located CR: TESTOO0006
Located CR: TESTOO0007
Located CR: TESTOO0008
Located CR: TESTOO0009
Located CR: TESTOOO010
|

Analyzing Change Requests,.,
hange Request Analysis complete, iv_

This is an example of the SpectrumSCM Interim Release feature. The Interim Release feature gives QA leads
and other testing professionals the ability to extract the correct source versions for each phase of testing into a
staging area. In this example the testing lead has entered the Integration Test phase as the base phase for the
Interim Release query. When the query is executed, the tool will locate all of the CRs on the cutrent branch that
meet or exceed the query criteria. The qualified CRs list in this example contains six (6) CRs that meet or
exceed the Integration Test query parameter. On the left hand side of the screen, the system has rejected CR
number four (4) due to a file level dependency with another CR that is still in the development phase.

At this point the testing lead could extract the exact version of the system that is represented by this list of
qualified CRs and the last full release of the system. When the Interim Release is written out to the filesystem, a
bill of materials (BOM) is also written out and contains all of the information about this particular release of
the system. This information can then be published to a web site so that all of the other testing team members
will know exactly what is in the testing area. By executing multiple queries, one for each phase of testing,
multiple simultaneous testing sessions can be executed in parallel.

April 06, 2005 Spectrum Software Proprietary Page 9 of 22

SpectrumSCM Concepts and Usage

3.0 SpectrumSCM Usage

The SpectrumSCM GUI can either be installed directly onto a user’s workstation or can be accessed directly
over the web. Regardless of whether the client is accessed directly from the desktop or over the web, the look,
feel, operation and functionality of the tool is exactly the same. This is possible because the SpectrumSCM

GUI is 100% Java and runs equally well over the web as it does in a direct installation.

Figure #10 is a snapshot of the SpectrumSCM main display running as a web initiated application.

Figure #10

Izl SpectrumSCM - scm - Connected to localhost: 1099

[B8][=1)>%

File Edit Extract Check-In “Wotkspace ChangeRequest Administration Beports

Help

o= @ commandline
o @ dbaccess
o @[eclipse
o @ evolve
L @ excephons
o [netp
o @[itnplernentation
o= @ installer
o @ interfaces
L % license_installer
o @ petsistent
- presettation
o @ prodtooks
> 03 proxy
o (3 pub
e @ transpott
Lo @ utilities
@ Semmjava [2.2]
I:h Seend java [1.0]

Regex: ‘mam

@) SCHMO00001 - Load initial sourees

4

XBEE seas @adu 88 &
Ptn]acts'|SCM |v Geneucs'iBase]jne |V| Local Root Directnry'|c.\cuxey\temp\sxc |vH ‘
b SM Assipned CRs |CR Filtets |: ‘A]l ‘v| [Modules
7 [Baseline =
? @] ® SCHMO00003 - Trnplesment new GUT feature e

[H|

M Comtent Search | Meta Search ‘ Meta Info r CR Search

| [v] Recussive | Search || Clear

File

Content

| Soft Delsted|

&ctvate Commandline java

mam(Stang{] agzv)

-

HladdMote java

mam(Stang|] azs)

A |[Bulk&ssien java

mamnStang|] ass)

A|Check java

main(Steing|] agzs)

|Checkinjava

main(String|] args)

| CheckinDit java

main(String|] args)

N|Checkaut java

main(3tring(] argsh

Chat input'l

SCMO00003 - High - Develop: Implement new GUI feature
SCMO00001 - High - Test: Load inibial souzces

File: Semjava - Wemsion: 2.2, - Last edited by sem at 2005/03/28 12:36:17 under CR 3CMO00003 - Generics: Branch 1, Baseline
File: Setndjava - Vesion: 1.0, - Last edited by sem at 2005/03/28 12:26:58 under CR SCMO00001 - Generics: Baseline, Branch 1

1]

The SpectrumSCM main display contains the following features:

e Tree View: The tree view is the users view into the SpectrumSCM repository. This view displays
information containing each files version number, check out status and workspace synchronization

status.

e Active CR List: The active CR list displays the uset’s directly assigned change requests. The header
information for each change request is displayed just to the right of the change request number itself.
The user can obtain a detailed report for each change request simply by double clicking the change

request itself.

e Edit Status and Search tabs: The edit status and search tabs are located in the center of the screen.
The first tabbed area contains an edit status panel and the other tabs contain search panels for file
content, meta information and change request information

e Project Bar:: The project bar is located just above the tree view and contains combo boxes for the
user’s assigned projects, branches and local workspace.

¢ Menu bar and Tool bar: The menu and tool bar are located at the top of the screen. Most all menu
and tool bar functionality is also available in the form of context sensitive menu items.

e Modules: Modules allow the user to group files together and associate them with a single name.
Later, the user can perform CM operations against this single name as if it were a single file.

April 06, 2005

Spectrum Software Proprietary

Page 10 of 22

SpectrumSCM Concepts and Usage

Once logged in, the user will be presented with a screen similar to the one in figure #8. If the user already has
active change requests assigned to them, they’re ready to begin live work against the project. If the user has the
propet permissions within his/her assigned role, they may be able to create and self-assign their own change
requests.

Before file check-out procedures can take place, the user must identify a Local Root Directory (LRD). The
local root directory is a location on the users’ local workstation where check-out and check-in operations are to
take place. When files are extracted from the tool, the path that the file is written to is controlled by the local
root directory and the relative path of the file in the file tree. For instance, if the local root directory is set to
“c:\joe” and the relative path to the file in the tree is “src\foo.c”, then the absolute path to the file will be
“c:\joe\src\foo.c”

3.1 Creating CRs

Before any work can be done on resources controlled by SpectrumSCM, the user must have a change request
to perform the work against. Either the user can create change requests for themselves, if they have the proper
permissions, ot they can have project leads/senior developers create and assign a new change request to them.

To create a new change request, the user can pull down on the Change Request menu item (Figure #11).

Figure #11

Ik SpectrumSCM - scm - Connected to localhost: 1099
File Edit Extract Check-In ‘Wotkspace Qha.ﬂgeRequest| Administration Reports

% P E I: teate... Ctrl-C
e e —
|

Assizn/ Modify.. Cil-&
1

Alternatively, the user can press the create change request icon located on the tool bat (Figure #12).

Figure #12

xXpEE sses asnu(@D 8

The change request creation screen contains a number of components that must be selected and/or completed
before a new change request can be created. The screen components consist of the followings items:

e Attribute/Value selection: On the left of the change request creation screen is a table which will
contain a series of change request attributes and their associated values. The values are held within a
pop-down menu. Double click the default value to raise the pop-down menu.

e Change Request Header: The change request header is a one line description of the issue that is
displayed along with the change request number itself on all GUI screens.

e Change Request Description: The change Request description is a multi-line description field that
allows the user to enter as much information as necessary to describe the issue.

e Identified Phase: The identified phase is the phase with the current life cycle that this issue has been
raised. For instance, if during system testing an issue is found, the user creating the CR would select
that phase as the identified phase.

e User/Self Assign check boxes: The Self and User assign check boxes will either be enabled ot
disabled depending on the user’s role within the current project. If creating a change request for
personal use, select the Self Assign check box. If creating a change request for another user, select the
Assign to User check box.

April 06, 2005 Spectrum Software Proprietary Page 11 of 22

SpectrumSCM Concepts and Usage

Figure #13 is a snapshot of the change request creation screen. In the figure, the Priority attribute value
selection pop-down has been activated with a double click. Also note that the first element in the selection set
is the “Select A Value” selection. Mandatory change request attributes will always have this selection as their
default selection. Unless the user completes selecting an item for the mandatory attributes, they will no be able
to complete the change request creation operation.

Figure #13
dzk SpectrumSCM - Change Request Creation Q@
File Acton Help
x Cloze v Cteate # Self Assizn ﬂl HAssien to User a Anto Fill
Creabon Detals
By : som Creation Date : 2005/03/30 10:19:11 Idenitified Phase : |Selsct Phase =
Attributes Header
Marme WValues | |
Severity High :
i Desctiption Word Wra
Location Atlanta P 1 £
Priosity Select & Value R
Select & Walue
Assigned for Wodk
Assiened for Shady
el Attachraerts
Add.. Drelete Wiemsr ‘ - |
[] Create D:I Cloties
[] £4d4 clones as children
[]self Azsizn O Azsizn T'o User
? Cteate x Cancel

Several other items of interest on this screen include the “Auto Fill” button at the top in the tool bar, the
attachments section mid-way to the bottom right and the “Create Clones” section at the bottom right of the
screen. The “Auto Fill” functionality allows the user to create a new change requests based on the input values
from an already existing change request. The attachments section allows the user to attach, view or delete
attachments against the change request. Finally, the create clones section allows users to create a series of
change requests, all with the same attributes/values, header and description information. The clones of the
original change request are identified as such in their descriptions. Once clones have been created, the user can
change the specific header information for each clone in the Change Request Assign/Modify screen. Cloned

change requests can be automatically assigned to a WBS (wotk breakdown structure) by simply checking the
“Add clones as children” check box before pressing the Create button.

April 06, 2005 Spectrum Software Proprietary Page 12 of 22

SpectrumSCM Concepts and Usage

The assignment of change request to a specific user and/or life cycle phase is handled as patt of the

confirmation popup that is presented during the create operation (Figure #14).

Figure #14

Assigning Change Request

-,

Fhase (efletic Uset
study w | |Baseline || |Select & Yalue
CE Cancel

Change requests can be created and assigned to any phase within the life cycle except for the Completed and
Killed phases. When the user has elected to self assign the change request, the User combo box is automatically
removed from the Assign Change Request popup.

April 06, 2005

Spectrum Software Proprietary

Page 13 of 22

SpectrumSCM Concepts and Usage

3.2 Checking out files

Files can be checked out of the system in one of two modes. Files can be checked out in a read-only mode, or
files can be checked out in a writable mode, which means that the files can be modified and then checked back
in. Files cannot be checked out for write mode unless the user has also selected an assigned change request.
The connection between change request and checked out file is done during the check out operation and not
during the check in operation like in some other tools, i.e. the association is not accomplished through the use
of check in triggers.

Check out operations can be performed from many different locations. Check out functionality on the main
screen exists in several locations:

e Main menu bar
e Main tool bar
o Context Sensitive menu

Other than checking a file out for one of the two modes mentioned above, the user can also specify whether
the file should be checked out directly to the uset’s desktop and whether the check out should be common
across all branches or specific to the current branch. These options are all presented on the context sensitive
menu accessible by right clicking on any file in the source tree view (Figure #15).

Figure #15

? ﬁfj], dbaccess
EB BinaryDatabasehlanazerjava [1.0]

1 et e

[c Check-Out to Disk ¥ B Read Only t2 Search
0 ikl
Check-Cut to Deskto ¥ L
[B Dl 3 E Uncomtron CHl-b :I—I
EB - ﬂ Compate to Loca Root... m CarraaaEE Cirl-0
EB Rej ﬂ Corapate to Genetic.. m Cotmmon,/ Concuttent
o= ﬁ eclipse
o= ﬁ evalye
o [exceptit @) open Witk
7 ﬁ' hitp 2 Renarme...
o () immplem . ow | e
- ﬁ installey @ Vession Histos... File: Semijava - Vession: 2.2, - Last edited by sc
o ﬁ interfac File: BinaryDratabasebdanagerjava - Version: 1.1
* Dependency Status.. File: BinDvb java - Version: 1.0. - Last edited by

o= ﬁ licetse_mistallet mEl

The context sensitive menu in the screen snapshot above illustrates the options available to the user during the
check out operation. Note that in this case the tool has been confignred for an advanced user. A normal user will see an
abridged context sensitive menn, which simply contains the two options Check-Out to Disk and Check-Out to Desktop with
Sfurther options for read-only and write access. The user can choose between one of the four items presented on the
pull-right menu section of the popup menu:

e Read Only: A check out read only simply places the file on the user’s local hard drive, relative to the
local root directory (LRD) but without write permissions.

April 06, 2005 Spectrum Software Proprietary Page 14 of 22

SpectrumSCM Concepts and Usage

¢ Uncommon: An uncommon check out is a full write-privilege check out that, if the file is associated
with multiple branches, will specialize the file into the current branch. Think of this as branching this
particular file.

e Common: A common check out is a full write-privilege check out that does not break the sharing
between

e Common/Concurrent: Check a file out in a soft locked mode for write access. When a file is
checked out in a concurtent ot soft locked mode, the file is still available for check out by other users.

Once a file is checked out, either to the disk or to the desktop, an entry is written into the edit status window
on the main display (Figure #16). The foreground color of the file entry in the tree view is also modified to
reflect the checked-out status of the file.

3.3 Checking in files

The check-in operation can be performed from several different locations within the main SpectrumSCM GUL
Easily the most elegant location from which to check-in files is on the Edit Status panel (Figure #16 above),
which allows the user to multi-select a series of files and then complete the check-in operation.

Figure #16

rEdit Status r Contetit Search r hleta Seatch r hleta Info r CR Seatch |

CR# | File | Edit Tirne | Edit Flace | Ditectory Generic
SCMO00003 BinaryDatabasebdanacerjava 2005/03/30 16:06:00 ceoreyibmplisem).. scm'dbaccess Bazeline (Common)
SCMO00003 BinDbjava 2005/03,/30 16:06:03 el\eoreyhtpllsem',... sem’ dbaceess Baseline (Common)
SCHO00003 Contextjava 2005/03,/30 16:06:07 cl\eoteyhbmplisem’... sem’ dbaccess Baseline (Common)

Files can also be unlocked directly from the edit status panel. The user can multi-select a series of files and then
by right clicking the mouse, execute the unlock functionality. What happens to the original file during the
unlock operation is controlled by the unlock user preference (Figure #17)

Figure #17
=1 SpectrumSCM Preferences [Q@]
File Help
Fonts |/ Custom Editors) | Custom Report Wiewer r Proxy Sethings |
eneral Settings (1) r General Settings () |_

Unlock f Undo Check-out Options

WWhat do you want to happen to your local wotkspace file in the event of a unlock operation
Maote: This only applies to check-out to disk operations.

) Leawe as is () Set to Read-Cinly @ Feset File) Remove File

Advanced User Option

selecting the Adwanced User option enables a more extensive context menu systerm.
All functionality is still available to a tepular user, just off of the menu-bar instead.

i) Regular Tlser ® Advanced User

Save Cancel

April 06, 2005 Spectrum Software Proprietary Page 15 of 22

SpectrumSCM Concepts and Usage

The four (4) unlock options are as follows:

e Leave as is: If this option is set, the file is left as is completely intact.

e Set to Read-Only: If this option is set, the file attributes are set back to read-only mode.

e Reset File: If this option is set, the file is overwritten with the current head revision of the file.
¢ Remove File: If this option is set, the file is removed from the file system.

3.4 Synchronizing workspaces

SpectrumSCM has two features that allow users to keep their work areas synchronized with the repository:

e Workspace Analysis
e Workspace Synchronization

The Workspace Analysis feature automatically analyzes file differences between the user’s workspace and the
repository as the user interacts with the main GUI. The workspace analyzer decorates the default tree view
icons with additional information based on the files state. In the example in Figure #18, two files are out of
sync with the repository, (marked with yellow triangles) and one file is missing altogether from the user’s
workspace (marked with a red X). To resolve the synchronization issues, the user can right click and simply
extract (check-out for read-only access) the marked files, or the user can use the workspace synchronization
feature to resolve the issue.

Figure #18
% scu ; ;
¢ B Baselin Assighed CRs CR Fﬂters...| : |A]1 |v|
& Baseline ;]
¢ 05 som ® SCMO00003 - Implement new GUI feature =

o (5 commandine @ SCMO00001 - Load initial sources

? ﬁ[dbaccess
BinaryDratabaseManager java [2.
BinDhb java [2.1]

[D Contextjava [1.0]

EB DratabaseManagerjava [1.0]

B8 Db java 1.

ED Repositoryhanagerjava [1.0]

l/ Edit Status r Content Search r Meta Search r Meta Info r CE Search |

CR# | File [Edit Time [Edit Flace Ditec

The workspace synchronizer feature (Figure #19) allows the user to see a consolidated list of all files that need
to come into the uset’s workspace, as well as a list of files that need to be merged from the user’s workspace
back into the repository. The actions are set up as two separate capabilities so that the user can execute each
independently. This allows the user to selectively update specific files or directories within their local workspace
based on work done by other usets.

April 06, 2005 Spectrum Software Proprietary Page 16 of 22

SpectrumSCM Concepts and Usage

Figure #19
Izl SpectrumSCM Workspace Synchronizer - c:\corey\tmp1 (=[]
File Edit Check-In Check-Out Scanner Help
|” Incorning Scz.tmer"ﬁ Outgoing Scznner|
Outgoing file ﬁlters:|.java |v " Delete| Mewr ﬁlter:| ||Add
SCM ||| Incoming Files
7 [& Baseline i File | Directory | File Status | Action Status Recommended Action
¢ G sem 2| |Serm java chycoteyitmpl.. Out of syne Cotplete Extract soutces requited
L ﬁl commandline AddMotejava ocorey\tmpl.. Cut of sync Complete Extract soutces required
BinD'h jawa cihcoteyitmpl.. Out of syne Incomplete Extract soutces required
s ﬁl dbaceess BinaryDatabase... ¢\ corey\tapl.. Out of sync Incomplete Extract soutces required
o= ﬁ[eclipse Db jawva cycoteyitmpl... File Missine Incomplete Extract soutces required
o= ﬁ[evolve
o= ﬁ[exceptions
o= ﬁ[http File | Directory | File Status Action Status Recommended Action
-0 itnplernentation || :
o= ﬁ[installer
o= ﬁ[interfaces
o= ﬁ[license_installer
o ersistent

Once a set of files have been identified as either incoming out outgoing changes, the user can select one or

more files and right click to see a set of appropriate actions. For incoming files the actions are limited to the
following choices:

e Check-Out (Read Only): Extract the head revision of the file from the repository and overwrite the
selected file.

e Compare: Compate the local file with the head revision in the repository. The compate is done using
the built in 2-way diff/metge tool.

For outbound files, those that need to be merged with the repository, the list of available actions is expanded
to include the following:

e Check-Out (Read Only): Overwrite the existing file with the head revision of the same file from the
repository.

e Merge (Common): Merge the local changes into the repository with a common edit. This action will
invoke the 2-way merge tool on the selected file and the same file from the repository and allow the
user to merge the changes into the repository via a “common” edit. A common edit is an edit that can
be seen across all of the branches that the file is “common” or shared with.

e Merge (Uncommon): Merge the local changes into the repository with an uncommon edit.

e Compare: Compare the local file with the head revision in the repository.

e Check-in: If the file is officially checked-out, check the file back in.

e Add File: If the file does not exist in the repository yet, add it.

e Unlock: If the file is officially checked out, unlock the file.

¢ Remove: If the file has been deleted from the repository, remove the file from the local workspace.

The outbound scanner works by comparing the set of files and their types, located on the users LRD (local
root directory), against a set of outbound filters that are defined by the user. Outbound filters are simply the
file types (extensions) that the user would like the outbound scanner to examine. Files that are not part of the
set of files defined by the outbound filters ate ignored during the scanning process.

April 06, 2005 Spectrum Software Proprietary Page 17 of 22

SpectrumSCM Concepts and Usage

By default, the incoming scanner will scan only those files that are currently marked as read-only in the user’s
workspace. And, by default, the outgoing scanner will only scan those files that are marked as writeable. The
user can change this behavior by selecting Edit->Scanner Options on the synchronizer main menu bar and
modifying the default options (Figure #20).

Figure #20

¥ 1

< SpectrumSCM WorkSpace Synchronizer Options
Incoming Scanner Options

[| Include "Read-%irite" files
Chatzoing Scanner Cptions

[] Include "Read-Oinly" files

Apply| | Cancel

The scanner options dialog contains two sections, one for incoming scanning options and one for outgoing. By
selecting the “Include Read-Write files” in the incoming section, the incoming scanning operation will include
those files that are writable by the user. If the user elects to “Include Read-Only files” in the outgoing scanner
options, the outgoing scanner will scan read-only files. This is especially useful if offline work was performed
on read-only files as some editors do allow the user to force writes of read only files. Also, the may have
received a set of files from another source and by default the read-write flags on those files may be set to read-
only.

3.5 Parallel development

Parallel development is a huge subject and the type of branching patterns necessary to properly manage a
parallel development effort may vary based on the circumstances. Never the less, this section will cover the
most important aspects of the SpectrumSCM branching model and show how the branching features in
SpectrumSCM can be used to solve common parallel development problems.

There is an additional white paper on the SpectrumSCM website that discusses some of the more common
patterns used to solve most parallel development issues. Please see the following link for additional details.
http:/ /www.spectrumscm.com/WhitePapers/BranchingDesignPatternsupdate.pdf

As mentioned in section 2.4, branching in SpectrumSCM is done at the project level first and then secondly at
the file level within a branch. One of the chief differences between SpectrumSCM and most version control
tools is that files in SpectrumSCM can be shared across multiple branches simultaneously. When a file is shared
across two or mote branches in SpectrumSCM, the physically shared files are referred to as being common
across the branches. Files can be edited common in order to extend an editing session across one or more
branches. Files can also be edited uncommon, in which case the share is broken with the other branches and
the file becomes specialized into the current branch. The commonality between the file and the other branches
involved in the original group of common branches, remain intact. For instance, if a file is common across
three branches BR1, BR2 and BR3, and the file is checked-out uncommon to BR3, the file remains common
across branches BR1 and BR2.

After a file, or set of files, has been specialized into a branch, there are two options for merging branched
material back into the other branch lines:

e Merging
e Re-Commoning

April 06, 2005 Spectrum Software Proprietary Page 18 of 22

SpectrumSCM Concepts and Usage

When the user elects to merge the contents of a file on one branch into another file on a different branch, only
the contents of the files are merged together. The files themselves remain completely separate entities.

When the user elects to re-common the contents of a file on one branch into another file on a different
branch, the contents of the files are merged together and then the two physical instances of the files are
recombined into a single physical instance. At the lowest level this action is similar to forming a symbolic link
between two files in different directories. One of the files is physically removed and is replaced with a symbolic
link of the other file. This is essentially what is happening under the covers within SpectrumSCM when the user
elects to re-common two files back together.

There are some keen advantages to the branching model in SpectrumSCM. For instance, branches become
much longer lived entities than they are in plain version control tools. In most version control tools, once a
branch is formed from another branch, the new branch and the parent branch begin to deviate from one
another. Over time, the gap between the two branches can become quite wide. In order to refresh the branch
line from the mainline, a rebasing or global merge operation must take place. This action can prove to be quite
painful and is often referred to as merge mania and is avoided as much as possible. To avoid the situation, most
branch lines are used for a specific purpose and then abandoned in place. SpectrumSCM improves on this
scenario by giving baseline users the ability to perform real-time integration with a branch line (by performing
common edits across branches), and by giving branch line users the ability to re-common their work with the
baseline. By following this pattern, a branch line is constantly in sync with the parent baseline. For example,
suppose there is a baseline branch and a new branch is formed from the baseline in order to complete a long
running feature development operation. While the new feature is being developed, the files specific to the new
feature are being specialized into the branch line. As work proceeds on the baseline branch, work is done
common to the branch line and thus the branch line is constantly integrated with the baseline. Once the feature
work has been completed on the branch line, the only difference between the branch line and the baseline is
the addition of the new feature itself. Once the new feature is added common to the baseline branch, the two
branches will be completely in sync and will stay that way until the next time that the feature branch needs to
be used again.

Constant integration and re-commoning allow branches in SpectrumSCM to survive far longer than branch
lines in other products. Plus, because branch lines in SpectrumSCM can be reused over and over again, the
number of branches formed over time is greatly reduced.

Three different types of branches can be formed in SpectrumSCM:

e Mainline
e Release line
e Vendor line

A Mainline branch is a branch formed as a child of an existing branch. When a mainline branch is formed, all
of the files in the parent branch are immediately shared with the new branch. All work that was visible on the
parent branch is also immediately visible on the new branch. Use this type of branch when a branch needs to
be formed to support parallel development of multiple releases.

A Release Line branch is a branch formed from a previous release of a product. When a branch is formed from
a release, all of the files formed on the new branch are rolled back to the versions of the files contained in that
specific release. If files in the release have not deviated since the release was formed, those files will remain
common across the two branches. Files that have deviated since the release was formed are un-commoned
from the parent branch and rolled back to the proper versions in the new release branch. Use this type of
branch to form patch releases of existing releases.

A Vendor branch line is a branch that is not rooted in another branch. Vendor branch lines can be used to

support third party code releases from other vendors. Use this type of branch line when a sub-project must be
added to a higher level project.

April 06, 2005 Spectrum Software Proprietary Page 19 of 22

SpectrumSCM Concepts and Usage

3.6 Merging/Re-commoning

As mentioned in section 3.5, merging is the act of recombining the contents of two files and re-commoning is a
merge action along with a symbolic linking action. Where two files existed before, one file will dominate the re-
commoning action and will become the file from which the symbolic link is formed. SpectrumSCM doesn’t
really use symbolic links, they’re not platform portable. The concept is just used to aid the reader in
understanding what is happening under the covers.

SpectrumSCM suppotts both a 2-way and a 3-way merge tool for use in merge/re-commoning operations.
Each has advantages that work well in certain scenarios. For example, if work is being done on a branch line
and some additional work has been done on the parent branch against the same set of files, the user is going to
want to use the 3-way merge tool to review the differences between the two. The reason for this is that the 3-
way tool can graphically display the differences between the two files in reference to the common ancestor of
both files. Figure #21 illustrates the point.

Figure #21

In order to properly merge version 2.2 of the file illustrated in Figure #21 with version 1.3 of the same file on
the other branch, the user must also be able to understand what has happened to the target file (version 1.3)
relative to the common ancestor, (version 1.0). This is where the 3-way merge tool will help the user
tremendously. The user will be able to see the changes made to version 1.3 of the file relative to version 1.0 and
he/she will also be able to see the changes made to file version 2.2 relative to the common ancestor (1.0).
Figure #8 above contains a snapshot of the 3-way merge tool.

While the 2-way merge tool can be used to merge any two files together, it is best used in situations where the
target merge file has not deviated from the common ancestor. For instance, if in Figure #21, version 1.1, 1.2
and 1.3 of the parent branch line had not been created, then the 2-way tool can be easily used to merge the
changes from the branch line back into the parent line.

April 06, 2005 Spectrum Software Proprietary Page 20 of 22

SpectrumSCM Concepts and Usage

3.7 CR promotion

As previously mentioned, change requests in SpectrumSCM flow through a software development life cycle
created by the end user organization. The assignment of change requests into the vatious states within a life
cycle is either done automatically through a workflow engine or is done manually by the user. Only users that
have been assigned into a role that allows them to perform change request re-assignments can physically assign
a change request into a different phase. Users of the system that don’t have the capability to re-assign change
requests are only allowed to promote their change requests into the TBA (To Be Assigned) super state. This
promotion is done using the change request progress screen (Figure #22)

Figure #22

Iz SpectrumSCM - Change Request Progress Q@
File AcHon Help

x Close ? Progtress ﬁ Add Note

~Change Requests

Mutnber | 5CKI000002 A

—Creation Details

Created By : scm Creation Drate : 200570404 11:16:17 Identified Phase : Drewelop

~Cutrent Dretails

Cutrent Uset : som Current Phase : Drevelop

—Attachinents
Cielete | [Wiewr -

Header
CR2

MModification Info

[peogeess | [lose |

The change request progress screen allows the user to promote assigned change requests up into the TBA
super state. The progression of the change request into the TBA state, like all change request creation and
transition activities, automatically sends e-mail notifications to other interested users, e.g. project managers.
Before promoting a change request, the user has an opportunity to add notes or modification information
directly to the change request. Modification information is different than a note in that this information is
associated with the change request transition itself. Notes, on the other hand, can be associated with a change
request at any point and are not necessarily associated with phase transitions.

April 06, 2005 Spectrum Software Proprietary Page 21 of 22

SpectrumSCM Concepts and Usage

4.0 Summary

The purpose of this paper is to give the reader a quick overview of SpectrumSCM’s fundamental building
blocks and tools. Readers interested in learning more about specific details related to SpectrumSCM’s
fundamentals and theory of operation are encouraged to take a look at the full user’s guide for the tool,
which is published in full on the SpectrumSCM web site, www.spectrumsem.com.

Please contact Spectrum Software, Inc. (support@spectrumscm.com) for further information.

April 06, 2005 Spectrum Software Proprietary Page 22 of 22

